

JoranConfigurator DRAFT

Ceki Gülcü, 2003-2004, © All rights reserved

Joran stands for a cold north-west wind which, every now and then, blows force-
fully on Lake Leman. Contrary to what its name might lead to believe, the Leman
lake bears little relation to lascivious debauchery. Located right in the middle of
Europe, it happens to be the continent's largest sweet water reserve.

Introduction
One of the most powerful features of the Java language is reflection. Reflection
makes it possible to configure software systems declaratively. For example, many
important properties of an EJB are configured with the ejb.xml file. While EJBs are
written in Java, many of their properties are specified within the ejb.xml file. Simi-
larly, log4j logging settings can be specified in a configuration file, expressed ei-
ther in key=properties format or in XML.

The DOMConfigurator that ships with log4j version 1.2.x can parse configuration
files written in XML. The DOMConfigurator is written in Java such that each
time the structure of the configuration file changes the DOMConfigurator must
be tweaked accordingly. Moreover, the modified code must be recompiled and re-
deployed. Just as importantly, the code of the DOMConfigurator consists of loops
dealing with children elements containing many interspersed if/else statements.
One can't help but notice that that particular code reeks of redundancy.

The digester project1 has shown that it is possible to parse XML files using pattern
matching rules. At parse time, digester will apply the rules that match previously
stated patterns. Rule classes are usually quite small and specialized. Consequently,
they are relatively easy to understand and to maintain.

Joran is largely inspired by the commons-digester project but uses a slightly differ-
ent terminology. In commons-digester, a rule can be seen as consisting of a pattern
and a rule, as shown by the Digester.addRule(String pattern, Rule
rule) method. I find it unnecessarily confusing to have a rule to consist of itself,
not recursively but with a different meaning. In Joran, a rule consists of a pattern
and an action. An action is invoked when a match occurs for the corresponding
pattern. This relation between patterns and actions lies at the core of Joran.

1 See http://jakarta.apache.org/commomns/digester for the digester project.

Quite remarkably, one can deal with quite complex situations by using simple pat-
terns, or more precisely with exact matches and wildcard matches. For example,
the pattern “a/b” will match a element nested within an <a> element but not a
<c> element, even if nested within a element. It is also possible to match a
particular XML element, regardless of its nesting level, by using the "*" wildcard
character. For example, the pattern "*/a" will match an <a> element at any nesting
position within the document. Other types of patterns, for example “a/*”, are not
currently supported by Joran.

SAX or DOM?

Due to the event-based architecture of the SAX API, a tool based on SAX cannot
easily deal with forward references, that is, references to elements which are de-
fined later than the current element being processed. Elements with cyclical refer-
ences are equally problematic. More generally, the DOM API allows the user to
perform searches on all the elements and make forward jumps.

This extra flexibility initially led me to choose the DOM API as the underlying
parsing API for Joran. After some experimentation, it quickly became clear that
dealing with jumps to distant elements while parsing the DOM tree did not make
much sense when the interpretation rules were expressed in the form of patterns
and actions. Joran only needs to be given the elements in the XML document in a
sequential, depth-first order.

Joran was first implemented in DOM. However, the author migrated to SAX in
order to benefit form the location2 information provided to the user, that is, to an
org.w3.sax.ContentHandler. With the help of location information, it be-
comes possible to display convenient error reports to the user which include exact
line and column. This extra information turns out to be convenient in hunting down
problems.

Availability
Joran will ship as part of log4j version 1.3 which is not yet released as of April 10th
2004. Joran and accompanying examples are only available from the log4j project

2 The location information is the line and columns numbers corresponding to various ele-
ments or attributes within the XML document.

CVS repository3. However, an alpha release of log4j 1.3 is expected to be available
within the next few days.

Actions
Actions extend the org.apache.joran.action.Action class which consists of
the following abstract methods.

public abstract class Action {

 /**
 * Called when the parser first encounters an element.
 */
 public abstract void begin(ExecutionContext ec,
 String name,
 Attributes attributes);

 /**
 * Called when the parser encounters the element end. At
 * this stage, we can assume that child elements, if any,
 * have been processed.
 */
 public abstract void end(ExecutionContext ec, String name);

Thus, every action must implement the begin and end methods.

Execution context
To allow various actions to collaborate, the invocation of begin and end methods
include an execution context as the first parameter. The execution context includes
an object stack, an object map, an error list and a reference to the Joran interpreter
invoking the action. Please see the org.apache.joran.ExecutionContext
class for the exact list of fields contained in the execution context.

Actions can collaborate together by fetching, pushing or popping objects from the
common object stack, or by putting and fetching keyed objects on the common ob-
ject map. Actions can report any error conditions by adding error items on the exe-
cution context’s error list.

3 See http://logging.apache.org/site/cvs-repositories.html

A hello world example
The examples/src/joran/helloWorld/ directory includes a trivial action and Joran
interpreter setup which just diaplays “hello world” when a <hello-world> ele-
ment is encountered in an XML file.

Look into this example to learn about the basic steps which are necessary to set up
and invoke a Joran interpreter.

Collaborating actions
The examples/src/joran/calculator/ directory includes several actions which col-
laborate together through the common object stack in order to accomplish simple
computations.

New-rule action
Joran includes an action which allows the Joran interpreter to lean new rules on the
fly while interpreting the XML file containing the new rules.

See the examples/src/joran/newRule/ directory for sample code.

Implicit actions
The rules defined thus far are called explicit rules because they require an explicit
pattern, hence fixing the tag name of the elements for which they apply.

In highly extensible systems, the number and type of components to handle are in-
numerable so that it would become very tedious or even impossible to list all the
applicable patterns by name.

At the same time, even in highly extensible systems one can observe well-defined
patterns linking the various parts together. Implicit rules come in very handy when
processing components composed of sub-components unknown ahead of time. For
example, Apache Ant is capable of handling tasks which contain tags unknown at
compile time by looking at methods whose names start with add, as in addFile,
or addClassPath. When Ant encounters an embedded tag within a task, it sim-
ply instantiates an object that matches the signature of the task class' add method
and attaches the resulting object to the parent.

Joran includes similar capability in the form of implicit actions. Joran keeps a list
of implicit actions which can be applied if no explicit pattern matches the current

XML element. However, applying an implicit action may not be always appropri-
ate. Before executing the implicit action, Joran asks an implicit action whether it is
appropriate in the current context. Only if the action replies affirmatively does Jo-
ran interpreter invoke the (implicit) action. This extra step makes it possible to
support multiple implicit actions or obviously none, if no implicit action is appro-
priate for a given situation.

For example, the NestedComponentIA extending ImplicitAction4, will in-
stantiate the class specified in a nested component and attach it to the parent com-
ponent by using setter method of the parent component and the nested element's
name.

Refer to the examples/src/joran/implicit directory for an example of an implicit
action.

Non goals
The Joran API is not intended to be used to parse documents with thousands of
elements.

4 Both ImplicitAction and NestedComponentIA are located in the
org.apache.joran.action package.

